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ABSTRACT
Tor [31] is the most widely used anonymous communication net-
work with millions of daily users [6]. Since Tor provides server and
client anonymity, hundreds of malware binaries found in the wild
rely on it to hide their presence and hinder Command & Control
(C&C) takedown operations. We believe Tor is a paramount tool
enabling online freedom and privacy, and blocking it to defend
against such malware is infeasible for both users and organizations.

In this work, we present effective traffic analysis approaches
that can accurately identify Tor-based malware communication.
We collect hundreds of Tor-based malware binaries, execute and
examine more than 47,000 active encrypted malware connections
and compare them with benign browsing traffic. In addition to
traditional traffic analysis features (which work at the connection
level), we propose global host-level network features to capture
peculiar malware communication fingerprints across host logs. Our
experiments confirm that our models are able to detect “zero-day”
malware connections with 0.7% FPR even when malware connec-
tions constitute less than 5% of Tor traces in the test set. Using
multi-labeling approaches, we are able to accurately detect the mal-
ware behavior-based classes (grayware, ransomware, etc). Finally,
we evaluate the robustness of our models on real-world enterprise
logs and show that the classifiers can identify infected hosts even
with missing features.

CCS CONCEPTS
• Security and privacy→Malware and its mitigation; Privacy-
preserving protocols.
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1 INTRODUCTION
Botnets and malware hiding behind Tor [31] have been reported
almost a decade ago [1, 29]. More recently, off-the-shelf tools sold
in underground forums, such as SystemBC [18], are increasingly
popular in aiding cyber criminals to build and launch Tor-based
malware. Malware-infected machines often need to connect to ex-
ternal servers to communicate with their C&C, fetch ransomware
payment pages, or download files needed for their operations [25].
Such malware can hide such activities and evade detection by ex-
ploiting the client- and server-side anonymity guarantees provided
by Tor. With the hundreds of Tor-based malware being launched
in the wild on a daily basis, there is an increasing need to detect
such malware. This will not only protect enterprise hosts from the
growing threat, but it will also rid the Tor network of the overload
of bots.

Since Tor router IPs are published publically, one solution is
to block connections. However, for individuals and enterprises,
there are various legitimate use cases for VPNs and Tor. Traditional
malware detection techniques based on destination IP addresses,
ports, or Deep Packet Inspection (DPI) are increasingly ineffective
due to the use of Tor routers between infected machines and their
C&C or destinations. Instead of directly connecting to enumerable
C&C IPs, multiple infected machines in a network will instead
appear as connecting to multiple Tor routers in network logs.

We believe that traffic analysis is a promising approach to address
this problem. Traffic analysis is the process of examining traffic pat-
terns (packet sizes, directions, timings, etc) to infer more (sensitive)
information about traffic, thereby reducing the expected privacy
provided by encryption or by proxy-based anonymization. For ex-
ample, traffic analysis on encrypted communication can identify
the language spoken in a VOIP call [68], sensitive webpages visited
(healthcare, legal, etc) [45], and Netflix show streamed [58]. In the
area of anonymous communication, traffic analysis has shown suc-
cess in a wide range of applications, mostly related to censorship
(detecting obfuscated communication) and privacy attacks [54]. For
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example, Website Fingerprinting (WF) [27, 36, 43, 53, 64, 65] can
identify a webpage visited by a Tor client only by using a super-
vised machine learning classifiers pre-trained with traffic features
extracted from prior visits to the same webpage.

In the realm of malware detection, traffic analysis has different
design goals that introduce new challenges. In WF, for example,
traffic analysts may not be interested in identifying uncensored
pages, whereas, for us, it is essential to detect zero-day malware.
Second, creating large-scale ground-truth datasets of real malware
connections is significantly more challenging than in other domains.
Another fundamental challenge is that we have to differentiate
between benign and malicious Tor connections so that we do not
interrupt the use of Tor for legitimate users.

In this paper, we present the first traffic analysis approach to
defend against Tor-based malware. We show that it is possible to
accurately differentiate between benign and malicious encrypted
Tor connections. More importantly, we show that this can be done
for “zero-day” malware variants, which have not been seen by our
models. This is achieved by applying traffic analysis techniques
to encrypted malware traffic and logs. We observe that Tor-based
malware exhibits execution or connection patterns that deviate
from legitimate or benign Tor-based browser use. We believe that
the analysis of encrypted traffic patterns can automate the identifi-
cation of such malware.
Our contributions. First, we build and update a repository consist-
ing of hundreds of thoroughly verified fresh malicious Tor binaries.
We inspect their traffic and ensure they are indeed malicious and
use Tor for their operation. For creating a benign dataset, we build
various binaries that simulate different profiles of traffic browsing
(using the Tor browser) with different settings and loads. We deploy
our (benign and malware) binaries independently on a sandbox
environment and collect thousands of traffic instances over months.
We also incorporate Tor traffic instances generated using various
applications that were independently collected and published. We
make our datasets available to the research community (See Sec-
tion 2.3).

Second, we characterize Tor-based malware binaries through
the analysis of different families and network traffic exchange. We
identify several characteristics that differentiate between malicious
Tor communication and typical benign Tor browsing sessions. We
craft and extract novel combinations of connection- and host-level
traffic features from benign and malicious traffic. We then create
(1) binary classifiers that can distinguish malware from benign
connections, and (2) multi-label malware classifiers that can identify
the malware class (ransomware, worm, trojan, etc.) based on their
Tor communication.

Finally, we craft several experiments to demonstrate the useful-
ness of our approach, feature categories, and models. In testing
our models, we build datasets that reflect realistic scenarios where
malware connections comprise a minimal percentage of all Tor
connections. Our experiments show that we can identify the follow-
ing: (1) malware connections, (2) malware class, and (3) zero-day
malware. Furthermore, we experiment on real-world enterprise
network logs which we obtain from our partners, and we are able
to red flag suspicious connections despite missing some features
due to the unavailability of raw PCAPs.

Exit circuit
Malware HS circuit
Benign HS circuit

Traffic analysis

Infected host

Benign 
browsing

C&C or malware page

Figure 1: Structure ofmalware and benign circuits, andwhere
traffic analysis is performed in Tor

Results summary. Our experiments, which are based on more
than 47,000 active real Tor binary connections, show that our mod-
els are able to identify malware traffic with 93.3% precision, 81.6%
recall, and 0.88% FPR. We further challenge our models by intro-
ducing unseen "zero-day" binaries and show that we are able to
correctly identify all malware connections with 0.7% FPR even
when malware instances comprise 5% of the test data. Our multi-
label classification models are able to predict the malware class
with high precision and low hamming loss. Finally, our real-world
enterprise logs experiment indicates that our classifiers are able to
identify the infected host even with missing features.

2 BACKGROUND AND MOTIVATION
2.1 Tor and traffic analysis
It is no surprise that an increasing number of malware variants
leverage Tor to hide their presence. To get client anonymity, users
typically install the Tor browser, which runs the Onion Proxy (OP)
behind a modified Firefox browser. OPs tunnel users’ traffic to
their destinations through circuits, paths consisting of three Onion
Routers (ORs) that are volunteer operated from all over the world.
The three ORs in a circuit are known as the entry guard,middle, and
exit. ORs and OPs share the network information including the OR
names, IPs, connection ports, public keys, and other information
through the router consensus document. Using the public keys in
the consensus, ORs establish TCP connections secured by TLS, and
each connection multiplexes multiple circuits. Tor sends data in
fixed-sized onion-encrypted units known as cells.

Tor also provides server anonymity. This is known as onion or
hidden services (HS). In this process, a user can deploy a server
and serve content without revealing her IP address or location.
Onion domain names appear random and end with .onion. Many
legitimate popular domains such as Facebook, duckduckgo, and
WikiLeaks operate as HS. However, the anonymity provided by HS
makes it also attractive for malware as a hideout for C&C servers,
which hinders takedown operations. As shown in Figure 1, Tor-
based malware connects to C&C through a 3-hop exit circuit if
the external server is deployed on a publically accessible machine,
or through 6-hop HS circuits if the external server is hosted as a
hidden or onion service.
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Table 1: Comparison to existing C&C traffic detection solutions

Related work Detection point Detection artifact Detection approach Scope Class
detection

BotMiner [35] Network TCP/UDP flow size Unsupervised network Coordinated ✗

(client side) DNS, SMTP, C&C IP flow clustering bots

Jackstraws [40] End Host System calls Supervised system call Generic ✗

behaviour graph clustering malware

TorWard [42] Network TCP flow DPI, DNS Signature-based Tor exit ✓✓✓
(Tor exit OR) C&C IP DPI traffic abuse

BOTection [22] Network TCP/UDP/ICMP connection Connection state Bots w/ bursty ✓✓✓
(client side) state, protocols (eg. DNS) stochastic modeling connection behavior

This work Network Tor cell sequences (TCP), Traffic analysis on Tor-based ✓✓✓
(client side) connection states, DNS encrypted flows malware

For a user or malware to reach HS, either (1) an OP (sometimes
modified or stale) is shipped with the binary and installed, or (2)
Tor2Web is used. Tor2web is a service that allows users to access
HS without installing the Tor OP.1

The threat model of Tor assumes a partial-view active adversary,
who can control or view parts of the network, and generate, edit
or delay traffic. If an attacker monitors both ends of a circuit (OP
to entry guard and exit to destination server), he will be able to
link the source to the destination using traffic or timing analysis
and thereby break anonymity. A dangerous class of traffic analysis
attacks known as Website Fingerprinting (WF) challenges this tra-
ditional threat model as it only requires the attacker to be present
between the OP and the entry guard. Figure 1 illustrates the point
where traffic analysis and WF are carried out in Tor. By analyzing
the encrypted traffic, the attacker is able to identify the visited page
and link the user to her destination.

Traffic analysis, and specifically WF, is carried out as follows.
First, the attacker visits his target pages using Tor and collects
network traces. Next, he extracts distinguishing features (such as
the sequences of packets or timings between packets or bursts, etc)
and uses them to train a supervised classifier. Later, when the victim
visits a page, the attacker uses the trained model to classify the
traces to a website. In this work, we follow the same approachwhere
we collect traffic of (1) various malware binaries and (2) benign
browsing sessions, and train a classifier to identify the traffic of
malware binaries, even those never previously seen by the classifier.
Section 9 summarizes prior WF work and compares it to our work.

2.2 Motivation: Enterprise logs case study
To illustrate and motivate our problem clearly, we consider a mal-
ware tracking case study from real-world enterprise logs that were
shared by our partners. The data contains large volumes of enter-
prise network traffic captured with BRO/Zeek logs [21] (connection,
DNS, HTTP, SSL, etc.) from May 2018 to February 2019. The data
contains more than 600 million entries in the connection log for
TCP, UDP, and ICMP connections and more than 170Million entries
in the DNS logs.

1As a result of not using an OP, this service does not provide user anonymity, and
onion address search queries may leave traces in users’ DNS logs.

Investigating the DNS logs for suspicious activities revealed
interesting observations. We identified several peculiar access at-
tempts to onion domains. Under correct usage of the Tor browser,
onion domains should not be visible in the DNS logs, as they are
resolved within the Tor network for anonymity reasons. Upon close
inspection, some of these domains were based on Tor2Web, and
some appeared to be benign domains possibly browsed by users on
a standard non-Tor browser (leading to their appearance in DNS
logs). However, seven onion domains2 stood out due to the high
frequency of their request rate in the logs.

These are related to the WannaCry ransomware, which is known
to use Tor to communicate with its C&C. Further inspection of
the connection logs revealed that the same IP that requested the
WannaCry onion domains also generated 197 Tor connections. Study-
ing DNS logs also revealed lookups for kill switch domains. These
are domains that are hardcoded in the malware to regulate its op-
eration. Figure 6 (in Appendix A) shows the timestamps of Tor
connection attempts, kill switch, and WannaCry onion domain ac-
cesses. We revisit this case study in Section 8 and show how our
models can identify malicious connections without relying on DNS
onion leaks.
Challenges in detecting Tor-based malware. In this particular
incident, onion accesses coincided with the Tor connection estab-
lishment attempts and originated from the same source, which led
us to believe some of the Tor connections may be related to the
malware (malware tries to connect to its C&C through Tor first.)
Without the onion domain access leaks, we would not have had
a reason to suspect that the existing Tor connections are related
to malware. An approach relying on IP or domain blacklisting is
irrelevant as the destination IP or domain appears as a benign entry
guard IP for both benign and malicious Tor connections. Even if
malware establishes multiple TCP streams, Tor often multiplexes
them in a single circuit, which is in turn multiplexed with other cir-
cuits in one TCP connection, so their frequency is very unlikely to
raise any alarms. Finally, approaches relying on DNS resolution (or
records) features alone are not expected to be useful, as Tor usually
resolves DNS within the network. These observations motivated

2Those are: 57g7spgrzlojinas.onion, 76jdd2ir2embyv47.onion, cwwn-
hwhlz52maqm7.onion, gx7ekbenv2riucmf.onion, sqjolphimrr7jqw6.onion, Xxlvbr-
loxvriy2c5.onion, and cwwnhwhlz52ma.onion
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us to explore approaches to identify Tor-based malware from the
traffic and the logs.

Identifying such covert C&C connections would also be challeng-
ing for prior work. Table 1 compares our work with other related
C&C or malicious traffic detection solutions. While valuable, these
works have limitations that make them less ideal for our purposes.
Their design is customized to capture specific malware behavior
that may not be exhibited by stealthy Tor variants. Indeed, the
detection approach used in some of these works is limited to iden-
tifying specific connection patterns in unencrypted botnet traffic
based on C&C protocols such as IRC, HTTP, and P2P.

First, we require detection to be performed on the client network
side. This allows a network admin, who has access to network and
traffic logs, to identify local infections effectively. TorWard is a
signature-based Deep Packet Inspection (DPI) solution designed to
detect abuse traffic (spam, DoS, etc) at Tor exit routers. Jackstraws,
on the other hand, detects traffic at the client side; however, it relies
on host-based activities such as network system calls to generate
behavior graphs, which can be more computationally expensive
than traffic analysis. Furthermore, many organizations do not have
access to DPI data or do not have access to the vantage point (exit
node) to identify Tor malware.

Second, while some of these works perform network-based de-
tection at the client side, they are not designed to detect stealthy
Tor-based variants, nor can they differentiate between benign and
malicious Tor connections. Botminer and BOTection, for example,
rely on traces of coordinated bots and their anomalous bursty be-
havior (such as scanning behavior within local networks to be able
to propagate). Single isolated Tor-based malware infections can
evade detection with such systems.

To summarize, prior systems require network data that is depen-
dent (coordinated) between multiple clients and servers [22, 35],
whereas our work classifies Tor connections independently. Also,
our goal is to differentiate between benign and malicious Tor con-
nections, which is more specialized. As we have different assump-
tions, input requirements, and objectives, we do not compare our
work empirically with previous work. However, we compare our
classifier performance against previous traffic analysis Deep Learn-
ing approaches [26, 61] in Section 5.

2.3 Ethical and safety considerations
We follow all possible precautions to ensure safe malware research
and compliance with Tor’s safety policy. We conduct our experi-
ments on Crowdstrike’s Falcon online sandbox environment, which
is widely used by researchers and the industry to conduct malware
analysis research and investigation. While each run allows malware
binaries to establish connections, each run is limited to six minutes.

Since we are performing traffic analysis on Tor connections, it
is important to ensure we are not compromising users’ traffic or
privacy. Indeed, our data collection and analysis are performed
on our data, and we do not touch other users’ data. Admittedly,
running Tor-based binaries creates malware connections through
the Tor network; however, this does not affect its users as their
circuits are isolated, and ORs only relay the corresponding cells to
the destinations. Again, this is done during a limited time window

that is generally acceptable in malware analysis research. Further-
more, our experiments do not overload the network. (Figure 4 in
Section 3.3.2 shows the data exchanged in our connections.)

With the hundreds of Tor-based malware variants launched in
the wild, devising techniques to eliminate such threats is paramount.
We argue that the benefits of such research outweigh the limited
risks we discussed above. In the spirit of open source and sharing,
we share our traffic datasets, scripts, and models online 3. We will
share the malware binaries hashes with the research community
upon request and consultation with the Tor project.

3 DATASET COLLECTION
3.1 Tor-based malware binaries
VirusTotal. We source our malware corpus from VirusTotal (VT),
a threat intelligence sharing platform used by thousands of security
researchers and hundreds of security companies. The VT platform
aggregates detection results for over 72 different AntiVirus (AV)
engines and reports their labels. On average, VT receives 1.8M
unique files daily, of which 400K are detected as malicious, and
of those, about 150K are windows malware [24]. As part of its
threat intelligence, VT provides the number of AV engines that
mark the file as malicious. A file object in VT contains several
useful attributes including capabilities and threat category tags that
provide a representative characterization of a file’s capabilities and
behavior (ransomware, spyware, etc) based on static and dynamic
analysis tools.
Tor binary collection.We utilize VT by carefully inspecting be-
havior reports of various Tor binaries, we use the following criteria
to search the VT platform for Tor-based malware:

(1) Search for keyword “tor”. Tor usage is often highlighted in
the reports by IDS analysis (e.g. “ET POLICY TOR Consensus
Data Requested”, “ET TOR Known Tor Relay/Router (Not
Exit) Node Traffic group 313”).

(2) Search for keyword “onion”. This allowed us to find binaries
that attempt to connect to onion domains (ending in .onion)

(3) Search for keywords related to the Tor process such as
“tor.exe”, “consensus” or “torrc”. Although some malware bi-
naries change the name of the Tor process to avoid detection,
we observed the torrc configuration file is still detectable.

Tor usage verification.We downloaded the PCAPs of the collected
binaries and examined their traffic for Tor connections. We use
Zeek [21] to generate logs that organize PCAP information based
on application protocols. We use conn.log, which contains the
connection details of TCP traffic, and ssl.log, which contains the
SSL handshake certificate details for the verification step. Tor traffic
utilizes TCP; therefore, we inspect the conn.log files of all binaries
to identify a connection with dstip = Tor router IP and dstport
= Tor router port. As for SSL logs of identified Tor connections,
we use them to verify router certificates. Tor router certificates
have peculiar SSL CommonName (CName) or servername field
values containing random strings ending with .com or .net (e.g.
www.q7edykf6lbgsuh.net [56]).
Identification of Tor-based malware binaries. We used the VT
malicious score to ensure that the binaries we are collecting are

3https://github.com/malfp/tormalwarefp
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indeed malicious. The score is the number of VT engines that detect
the binary as malicious. We collected 559 Tor-based binaries which
we filtered down to 523 malicious Tor-based binaries. We removed
36 binaries that had a score of 0. The remaining set of 523 binaries
had a median VT score of 44 (q1 = 37 and q3 = 51), indicating that
they were highly likely to be malicious.
Malware traffic collection.We analyze the Tor-based malware
binaries on Falcon sandbox [4], a public malware analysis service
from Hybrid analysis. The sandbox executes the binaries and then
generates PCAPs and analysis reports. At the time of writing, a free
verified account for the sandbox allowed up to 100 submissions/day
with six minute execution time limit per binary.

We implemented the above binary collection, verification, and
traffic collection steps in a pipeline that ran daily between June
and September 2021. Our binary collection module queries fresh
(submitted within the last 24 hours) Tor-based binaries on a daily
basis against the full VT database of malware reports to ensure
that fresh active binaries are collected. Next, our traffic collection
module submits those binaries to the deployment sandbox. The
traffic instances are then collected over several days until we have
submitted each binary 60 times. This way, we gathered the same
number of PCAPs per binary over the data collection period. Run-
ning both modules simultaneously ensures that we are capturing
fresh samples that are more likely to generate traffic and avoid stale
binaries (outdated binaries may not generate bidirectional traffic.)
Challenges. Analyzing malware in a sandbox system presents
several challenges. First, some binaries attempt to evade sandbox
analysis by sleeping, terminating, or alternating behavior when a
sandbox environment is detected. We identified these cases when
the sandbox analysis reports lacked network traffic. Therefore, dif-
ferent binaries generated different fractions of Tor traffic despite
the equal number of submissions for each binary.

Second, Tor-based malware network activities are highly vari-
able and unpredictable. For example, malware sometimes creates
scheduled tasks during which they establish Tor connections. Such
connections may not be visible during a sample run because the
sought-after Tor connections are scheduled outside of the limited
sandbox run window or because the C&C may not be online or
alive during the run time of the corresponding binary. Although
Falcon sandbox offers some features that address evasion tactics by
malware, we do not consider malware samples that require system
restart because the free version of Falcon does not support restart
during analysis. We also exclude malware binaries that do not initi-
ate Tor connections within the analysis window. For future work,
we recommend a more resilient sandbox technology to potentially
improve detection.
Generated malware traffic. In total, we obtained 5,984 PCAPs
from 362 active malware binaries (out of the collected 523 binaries)
which successfully generated traffic during their sandbox deploy-
ment window. We summarize the numbers of PCAPs per binary
and derive experimental datasets based on this data in Section 4.2.
As we discussed, it is difficult in this domain to obtain a larger set
of Tor malware binaries that are active within the limited sandbox
deployment window. One downside to our small malware corpus
size is that it may affect the generalizability of our observations
and results. We note however that our malware corpus contains a

diverse set of malware families and classes (Section 3.3.1). Same-
class binaries share patterns allowing our features to label them
with their behavior class, which aids the detection of newer novel
variants. In practice, machine learning detection models require
retraining with newer samples periodically to be able to predict
emerging variants and stay sharp against concept drifts.

3.2 Benign traffic
For the classifier to work effectively in the real world, we ensure
it is trained on benign traffic covering various client applications.
This is done by using (1) our own generated traffic of various loads,
and (2) an independently collected public dataset of benign traffic
consisting of various applications.
Generated browsing traffic. Tor is mostly intended for browsing.
We follow the footsteps of previous works in the traffic analysis
and WF literature in simulating web browsing clients over Tor us-
ing multiple profiles and usage loads. We use Tor Browser 10.5.2
in our scripts and our clients visit the latest published list of top
Alexa domains [19]. For hidden services traffic, we use Ahmia [7],
an onion service search engine and directory, to find 1000 onion-
sites we obtained from keyword searches for common categories
including bitcoin, cryptocurrency, social media, news, and tech-
nology. We ensure the liveliness of these onion domains and that
their accessibility is unaffected by the deprecation of onion v2 sites
during the transition to v3 in October 2021 as announced by the Tor
community [5]. We confirm that all onion domains in our list return
an HTTP 200 response before executing our collection scripts.

We introduce three client profiles simulating different frequen-
cies of accessing sites simultaneously using multiple tabs and win-
dows. We do this using random time gaps between site accesses,
similar to the negative, positive, and zero-time separated page ac-
cess methodology adopted in some Tor-based traffic analysis or
WF works [67, 69]. These user profiles are integral to the quality
of our benign ground truth, as the frequency and number of sites
accessed affect the number of web pages loaded during a browsing
session. This, as a result, determines the amount of data exchanged,
packet timing, size, and direction of packets collected during a
browsing session simulation. In particular, we define the following
user profiles:

(1) Light. Sites (index page only) are loaded with a positive
time gap ranging from anywhere between 20 seconds to
10 minutes. Here, we assume that a user may spend longer
periods of time before visiting another site.

(2) Medium.Amore active user is simulated with sites accessed
with a gap that ranges between 20 seconds to 1.5 minutes.
This may result in partial site loads running in the back-
ground while multiple other sites are loaded simultaneously.
This is similar to a scenario where a user may open Youtube
to play music and switches within a few seconds to read
news on CNN followed by visiting a cryptocurrency onion-
site, for example. At the network level, this may result in
more than one active Tor connection.

(3) Heavy. This is similar to the medium profile above with an
even smaller time gap between site loads. Here, pages are
loaded within 2 to 20 seconds.
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Using domain lists and different user profiles, we develop Python
scripts to access sites in the Tor Browser using the Tbselenium
driver library. We create scripts with the three profiles described
above (light, medium, and heavy) accessing only Alexa sites (popu-
lar and less popular), only onionsites, or a mix of both. We test these
scripts on a virtual machine running Windows 32-bit operating
system. We bundle the Python script, domain list, and Tor browser
to create a single windows PE32 executable to run on the sandbox
using Hybrid Analysis web API.
Collected data.We execute our bundled executables in the sandbox
over two collection periods totaling three weeks. The first two-week
collection period uses Alexa top 1K domains, whereas the second
collection period uses less popular Alexa domains (Alexa 1M ex-
cluding Alexa 1K). We combine 3,540 and 1,045 PCAPs from the
first and second collection periods, respectively, to diversify, gener-
alize, and enrich our benign dataset with domains from different
levels of popularity and provisioning. Furthermore, we intention-
ally construct the dataset to include substantially more traffic from
popular domains as we expect those domains to be visited more
often in practice. The 4,585 PCAPs have a breakdown of 38% light,
40% medium, and 22% heavy browsing traffic.
ISCXTor2016 [2]We combine our benign Tor traffic with a public
dataset collected by Lashkari et al. [2, 41], which has been used
previously to classify Tor traffic in a network [39, 44, 57]. The data
is auto-generated in a lab setup consisting of a workstation based
on Whonix, a Tor-based Linux OS simulating users accessing 18
applications including Skype, Gmail, Spotify, Youtube, and Vimeo.
For our purposes, we only use raw PCAPs corresponding to Tor
traffic from six categories: browsing, chat, mail, FTP, audio, and
video streaming. Because our malware PCAPs run for six minutes
in the sandbox, we used the first six minutes of all the available 30
PCAPs in this dataset.

3.3 Malware binary & traffic characteristics
In this section, we study and describe the characteristics of the
active Tor binaries and traffic we collected in Sections 3.1 and 3.2.

3.3.1 Families and classes. We use AVclass [60] and AVclass2 [59],
which are automatic malware tagging tools to categorize binaries
into malware families and classes. AVClass uses a majority voting
approach with advanced label and text normalization techniques
for binary categorization. Family labels are common names that
security companies use to identify specific malware threats. Class
labels are generic labels that define the malware type, such as
worms, trojans, hacking tools, ransomware, and others. Family
labels are more specific, while class labels are more generic and are
assigned by AV engines that may not have coverage for specific
families or they fail to correctly label them [47, 48].

As input, they take VT-generated reports and output a summary
for each binary hash containing its AV score, binary class (e.g.,
worm, ransomware, grayware, etc), and its most likely malware
family (e.g., zeus, agentb, wannacry, etc). In this analysis, we use the
362 active (out of 523) malware binaries that generated Tor traffic.
All binaries (active and inactive) belong to 80 families. Removing the
inactive ones resulted in excluding 23 families, for which we had a
limited number of inactive variants (these are listed in Appendix C,
Table 9). Figure 2 depicts the distribution of binaries based on
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Figure 2: Malware family distribution in active binaries

Figure 3: Malware classes in active binaries

malware families. The top three families are Nymeria, Agentb, and
Cryptoff with 80, 39, and 28 binaries, respectively. Other malware
family types covered in the dataset include Tortool, WannaCry,
Eternalrocks, weed, Enigmaprotector. There were 75 binaries that
AVclass categorized as “singleton” meaning their families were
unknown.

A binary can have one or more classes based on its behavior.
Active binaries in our dataset are characterized by 10 unique classes.
We observe that themajority of binaries belong to the grayware [14]
class which is a generic categorization used for malware and usually
includes other classes like spyware [17] or adware [20]. Figure 3
shows the malware class distribution of all our active binaries.4
Indeed, various binaries show multiple classes of behavior. For
example, 47 binaries are labelled as “grayware”, “miner” and “down-
loader” and 34 labeled as “grayware” and “ransomware”. The ob-
servations above show that our active binaries are diverse as they
come from different families. Second, Tor is clearly popular for
various behavior classes and families of malware.

3.3.2 Characterizing Tor malware connections. Our active malware
binaries produce a total of 30,592 Tor connections after excluding
idle connections.5 We experimentally determine that idle connec-
tions have less than 32 cells, including initial circuit construction
cells. The active connections represent a successfully established
Tor circuit with an end server. On average, binaries in our dataset
hold a connection for at least 19 seconds with an average of 181 TLS
packets sent and 393 received in all connections. Figure 4 shows the
CDF of data sent and received by binaries in Megabytes (MB). As
can be seen in the figure, data received in malware connections is

4For concise presentation, smaller intersections of binary classes were omitted.
5Tor creates multiple spare circuits for performance reasons that are sometimes never
used.
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Figure 4: CDF of data exchanged in active malware binaries

Figure 5: CDF of total data exchanged in malware and benign
Tor connections

comparatively more than data sent. Indeed, 72% of Tor connections
send up to 0.1 MB and receive up to 0.68 MB.

As for the benign traffic generated in the same sandbox, we
obtain a total of 32,275 Tor connections (after excluding idle con-
nections). Connections in our benign traffic last at least 38 seconds
on average with an average of 259 and 574 TLS packets sent and
received in each connection, respectively. Figure 5 depicts the CDF
of the total data exchanged in each Tor connection for our malware
and benign datasets. The three benign profiles generated connec-
tions with a wide range of traffic loads as intended. In fact, the
distribution of the data exchanged in malware Tor connections
appears to be particularly similar (and the distributions even inter-
sect), to the light and medium benign profiles, for roughly 70% of
the connections, exchanging up to 0.7 MB of data. The similarity in
benign and malware traffic makes for representative experimental
datasets that reflect real traffic captures with higher chances of
malware traffic blending into benign.

4 FEATURES AND DATA PREPROCESSING
4.1 Classification features
Connection-level features. A large body of related works in the
WF attack literature is based on extracting Tor traffic features for
precise webpage classification. The precision achieved in these at-
tacks mainly relies on time, direction, order, and concentration of
packets in Tor connections. These features characterize a unique
website fingerprint. Although it is not our goal to precisely expose
the sites being accessed, these features are generalized to identify
useful traffic patterns. For our work, we intend to capture malware

Table 2: Host-level features extracted using all Tor connec-
tions per PCAP (including idle connections)

Category Category-based Features

Duration Average/shortest/longest duration connection
No. of short duration connections (<= 1 minute)
Average duration between each Tor conn

Data Mean/median/mode of total data exchanged
Mean/median/mode of total data sent/received
Mean/median/mode of total packets sent/received

Port No. of unique DST ports used across connections
Most frequent DST port used across Tor conns
No. of non-standard DST ports seen
Most frequent non-standard DST port

Connection No. of connections seen (per host or PCAP)
No. of failed or rejected attempts
No. of connections per second
No. of failed attempts per second

DNS No. of DNS queries rcode_name: REFUSED
No. of DNS queries rcode_name: SERVFAIL
No. of URLs seen using "consensus" keyword
No. of URLs with "\tor" keyword
No. of DNS queries rcode_name: NXDOMAINS
Total no. of leaked onion domains
No. of unique onion domains leaked
No. of ’rejected’ onion domain queries

communication fingerprints from these features such as C&C bea-
con communication, malware payload download attempts, access
to specific sites, and use of the Tor browser by malware.

To this end, we use the features proposed by Hayes et al. [36].
This set consists of 150 WF features, and in general, the set com-
prises a superset of the features used in prior attacks. Hayes et al.
justifies the effectiveness of the feature set in extracting the most in-
formation from encrypted traffic, which exactly matches our goals.
We extract WF features for the top three active Tor connections per
PCAP. Note that a Tor client typically chooses three entry guards for
months and establishes TLS-encrypted TCP connections to them.
All circuits are then multiplexed in those three connections. Indeed,
we observed in traffic PCAPs that the top three are sufficient to
get all active data-exchanging Tor connections, which is precisely
what we need for traffic analysis.
Host-level features. In addition to WF features, we introduce our
set of novel features to capture malware behavior that may be ex-
posed by analyzing all Tor connections initiated by a host, including
failed and less active connections at a host level (or PCAP). This set
consists of 40 generic features in total with 22 novel features that
capture Tor-based malware activity as listed in Table 2. Below we
elaborate on our observations and intuitions about these features.

Malware attempts to connect to C&C are better captured by
looking at the number of short-lived Tor connections seen on a
host in the event of failed attempts, the frequency with which these
attempts are made, and the corresponding DNS activity. Our dura-
tion features include the average duration of all Tor connections
and other related statistics such as the minimum and maximum
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durations of connections and the number of short duration (<=
1 minute) connections seen in a PCAP. To capture the frequency
of connections, we formulate features such as the number of Tor
connections per PCAP, number of failed connection attempts, num-
ber of connections per second, and number of failed attempts per
second. We used the average time gap (in seconds) between each
Tor connection as a feature to capture unusual connection patterns.

It is possible that malware may fail to use Tor successfully to
contact its destination. In such cases, it may utilize other methods
to access its hidden service such as via Tor2Web. Doing so can
lead to onion domain leaks in the DNS activity of an infected host.
Moreover, some malware families are known to contact kill switch
domains (onion sites hard coded in the binary) which signal the
malware to execute certain operations. WannaCry, for instance,
uses a failed response from its kill switch domain as a signal to
spread to other machines in the network [3]. We capture these
scenarios with DNS features such as the number of DNS queries
with a ’REFUSED,’ ’SERVFAIL,’ or ’NXDOMAIN’ response, number
of onion domain leaks, number of unique onion domains leaked
and rejected onion domain queries.

We also observe that some binaries bundled with unofficial or
modified versions of Tor (such as mini Tor [52]) try to evade de-
tection by contacting private servers for router consensus informa-
tion.6 These may often contain stale router information, in which
case we observe the usage of stale Tor ports in malware traffic. This
in turn causes the malware to attempt to establish multiple Tor
connections. We use features such as the number of destination
ports seen in a PCAP across all Tor connections, the number of
unique DST ports seen7, most frequently used DST ports, and the
number of HTTP URLs accessing sites with keyword ’consensus’ or
’\tor’ to capture such activities. Finally, we use statistical features
such as the mean, median, and mode of the total data sent and
received and packets exchanged across all Tor connections.

Differences between benign and malicious Tor traffic arise from
(1) server traffic fingerprints (patterns, burstiness, lifetime of con-
nections, frequency, etc) and (2) client-side anomalies. Connection-
level features effectively fingerprint specific servers and their pages.
Host-level features are computed at the PCAP-level and capture
client-side anomalies such as short-lived, and sometimes failed con-
nections due to trying stale routers (IPs no longer in Tor consensus).

4.2 Extracting Tor connections
We extract Tor connections and verify them in a way similar to the
traffic verification approachwe described in Section 3.1.8 In addition
to using conn.log and ssl.log for extracting connections, we also
use dns.log and http.log fields for feature engineering. Once Tor
connections are extracted from PCAPs and verified in the pipeline,
we parse the corresponding connection packets for Tor cells. Tor
embeds application data into Tor cells of size 514 bytes [31]. We
follow the standard parsing methodology used by previous Tor
traffic analysis work (such as Wang et al. [66]) as follows.

A TLS packet consists of one or more Tor cell units. To derive
the number of cells in a TLS stream, we consider the length of the
6Tor ORs and OPs download the consensus information from the Tor directory servers.
7Tor and Tor Browser use standard ports: 9001, 9010, 443, 9050, 9150, 443, 80, 8080
8Recall that we previously used VT PCAPs to verify that the binaries we find using
our search heuristics do indeed use Tor.

TLS application record, round it to the closest multiple of 514, and
divide it by 514 (the size of one Tor cell unit). For instance, a TLS
record of length 1,088 results in two cells. If this record belongs to
an incoming packet, it is marked as negative, otherwise marked
as positive. The signs indicate the direction of flow. Each PCAP
may contain one or more Tor connections, each of which is parsed,
and stored in cell files as described above using Python’s dpkt
library [16]. Each line in a cell file corresponds to a single cell with
its time and direction information. The time is calculated relative
to the timestamp of the first packet of a Tor connection. By the end,
we have a cell file, which consists of cells corresponding to the top
three most active Tor connections for each PCAP (in terms of the
number of cells). Note that some PCAPs may have fewer than three
active Tor connections.

In total, we obtain 13,214 Tor connections from benign PCAPs
(refer Section 3.2 for benign data collection methodology). For mal-
ware traffic, recall from Section 3.1 that we have 5,984 malware
PCAPs generated by 362 binaries. From these, we derive four ex-
perimental datasets (similar to the n-shot learning approach in
Triplet-Fingerprinting [62]). Each dataset is denoted as 𝐷𝑁 where
𝑁 is the number of PCAPs selected uniformly at random per binary.
Table 3 summarizes these datasets with their respective notations,
the number of binaries in the dataset, PCAP instances with malware
traffic, and total number of classifier instances (Tor connections) in
the dataset. D5, for example, consists of traffic from 157 malware
binaries, each of which has five PCAPs, all containing malware
traffic. Finally, extracting the top three most active Tor connections
from each of these five PCAPs results in 2,027 classifier instances
in this dataset.

Table 3: Experimental malware traffic datasets

Malware
dataset

Number of
binaries

PCAPs
per binary

Total classifier
instances

D5 157 5 2,027
D10 130 10 3,657
D20 107 20 6,135
D30 62 30 5,342

5 BINARY CLASSIFICATION: CANWE
IDENTIFY MALWARE CONNECTIONS?

For evaluation, we use the following metrics: Precision, Recall, and
the False Positive Rate (FPR). Precision measures the ratio of correct
positive class predictions among all positive predictions reported
by the classifier. This defines how reliable model predictions are
if they were to be used in a real system taking into account the
number of false alarms. Recall measures the classifier’s ability to
identify positive class samples from all actual positive samples. A
classifier with very low recall would miss most malware instances
classifying them as benign, making false negatives high in this case.
Finally, the FPR is the most important metric, and our goal is to
keep it as low as possible so as not to overwhelm network admin
users with the rate of false alarms.
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5.1 AutoGluon
For binary classification experiments, we utilize AutoGluon [32], an
Automated Machine Learning (AutoML) tool developed by Amazon.
AutoGluon trains at least eight base machine learning and two
neural network models on raw tabular data.

Training and best performing model. The tool trains each
model iteratively using random stratified splits of data for training
and validation with different hyperparameters in each run. During
training, it tries to optimize model performances on validation
data based on an evaluation_metric. By default, it is set to the
accuracy metric. For our work, we change this to balanced_accuracy.
We found it to be the best metric to strike a good balance between
precision and recall while maintaining a low FPR. At the end of the
training phase, Autogluon reports the best-performing model based
on the chosen metric. Additionally, it summarizes the performance
scores of all trained models with the best hyperparameter setting
on the validation and test datasets (if provided by the user).

Base models, stacking, and ensembling. AutoGluon uses
Light Gradient Boosting Machine (LightGBM), CatBoost, XGBoost,
Random Forests, ExtraTrees, kNN, Logistic Regression, and Tabular
Neural Network models along with stacking and bagged ensembles
of each (refer to the reference documentation [9] for definitions of
each model type). Additionally, it offers multi-layer stack ensem-
bling called WeightedEnsemble, where a stacker model takes the
predictions of base models along with base features. Predictions of
stacker models are used as features for models at higher levels. In
the final layer, a weighted ensemble of stacker model predictions is
created using greedy forward ensemble selection. Predictions of a
model are weighted higher if it improves the evaluation metric on
validation data.

5.2 Performance evaluation: All datasets
Since we have four different datasets with different numbers of
traffic instances per binary, we first seek to understand if increasing
the number of PCAPs or training instances per binary impacts the
performance of the binary classification problem.
Training. We train autogluon models using our D5, D10, D20,
and D30 datasets (summarized in Table 3). We carry out each DN
experiment as follows. First, we split PCAPs into separate training
(70%) and testing (30%) datasets.9 Next, from each PCAP, we extract
its top three active Tor connections, and compute their connection-
and host-level features to create the corresponding classification
instances. For each 𝑃𝐶𝐴𝑃𝑖 , we have at most three classification
instances 𝐶𝐼𝑖𝐴 , 𝐶𝐼𝑖𝐵 , and 𝐶𝐼𝑖𝐶 defined as follows:
𝐶𝐼𝑖𝐴 → (𝑐 𝑓𝑖𝐴1, 𝑐 𝑓𝑖𝐴2, . . . , 𝑐 𝑓𝑖𝐴𝑛, ℎ𝑓𝑖1, ℎ𝑓𝑖2, . . . , ℎ𝑓𝑖𝑘 ,𝐶𝐿𝐴𝑆𝑆)
𝐶𝐼𝑖𝐵 → (𝑐 𝑓𝑖𝐵1, 𝑐 𝑓𝑖𝐵2, . . . , 𝑐 𝑓𝑖𝐵𝑛, ℎ𝑓𝑖1, ℎ𝑓𝑖2, . . . , ℎ𝑓𝑖𝑘 ,𝐶𝐿𝐴𝑆𝑆)
𝐶𝐼𝑖𝐶 → (𝑐 𝑓𝑖𝐶1, 𝑐 𝑓𝑖𝐶2, . . . , 𝑐 𝑓𝑖𝐶𝑛, ℎ𝑓𝑖1, ℎ𝑓𝑖2, . . . , ℎ𝑓𝑖𝑘 ,𝐶𝐿𝐴𝑆𝑆)
Variables 𝑐 𝑓 and ℎ𝑓 denote connection and host features, respec-
tively. For every extracted Tor connection, there is a corresponding
classification instance that combines both connection- and host-
level features. Connection-level features characterize the corre-
sponding TCP connection, whereas the host-level features charac-
terize the host/PCAP. Note that all host-level features from the same
PCAP are identical as they represent global host variables across all

9We also discuss a different splitting approach in Appendix B.

Table 4: Performance comparison of different datasets

Dataset Precision(%) Recall(%) FPR(%) AUC(%)

D5 93.3 81.6 0.88 98.56
D10 95.3 83.0 1.06 97.16
D20 96.2 89.6 1.55 97.76
D30 95.7 88.8 1.52 97.42

connections (e.g. total number of Tor connections in a PCAP, total
data exchanged across all Tor connections). For example, in D5,
connection-level features are derived from 2,027 TCP connections
(Table 3), but more than 47,000 connections are used to compute
its host-level features. For benign traffic, we get a total of 13,214
classifier instances from 4,615 PCAPs. Note that the models are
trained on imbalanced data as we have more benign connections
than malware in each dataset. This configuration is intentional as
it reflects the expected real-world scenario where benign browsing
traffic is more widespread than malware traffic.
Test results. Table 4 compares the precision, recall, FPR, and AUC
for all datasets. In general, malware connections are predicted with
high precision, recall, AUC, and very low FPR for all datasets. In-
creasing the number of malware traffic instances per binary used
to train models at the expense of a reduction in the total number
of unique binaries does not significantly impact performance. We
observe a noticeable improvement in recall and precision by in-
creasing the number of instances for each binary up to D20, after
which this gain slightly drops for D30 (possibly because it covers a
smaller number of unique binaries). However, FPR appears to be
increasing as the number of unique binaries decreases. With D5,
FPR is 0.88% and it gradually increases to 1.55% and 1.52% for D20
and D30, respectively. Following our observations, we choose D5
as the main dataset for further experiments as it consists of traffic
from the largest number of binaries (157) compared to the other
datasets and achieves the lowest FPR and highest AUC indicating a
superior ability in separating between the classes.

5.3 Impact of features
Experiments.We formulate binary classification experiments us-
ing D5 (See Table 3 for a summary of the dataset). The goal here is
to investigate the impact of host-level and connection-level features
and compare the performance of Autogluon models, which we treat
as a black box, and other recent Convolutional Neural Networks
(CNN) traffic analysis proposals [26, 61]. For this, we use our 13,214
benign and 2,027 malware classification instances in D5. These
are used to train all machine learning and deep learning models
in Autogluon (Section 5.1) along with Var-CNN [26] and DF [61],
which are deep learning models used to carry out WF against Tor.

Additionally, we evaluate Autogluon models using host-only fea-
tures with 785 malware and 4,615 benign classifier instances. Recall
that the host-level features are derived globally per PCAP using
all Tor connections, hence the number of classification instances
reduces in this case compared to when using the top three active
Tor connections per PCAP. For training and testing the classifiers,
we use the standard 70-30 (train-test) split on PCAPs in all cases.
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Table 5: Binary classification performance on D5 using different models and features

Experiment Model Precision(%) Recall(%) FPR(%) AUC(%) Feature set

E1 XGBoost 86.13 63.37 1.53 93.62 Connection-level
E2 LightGBM 90.96 76.34 1.45 96.91 Host-level
E3 LightGBM 93.33 81.60 0.88 98.56 Connection & host-level
E4 DF 75.51 60.76 3 91.24 Connection-level
E5 Var-CNN 85.65 35.59 0.9 86.27 Connection-level
E6 Var-CNN 91.48 55.13 0.78 89.23 Connection & host-level

Results. Table 5 summarizes the experiments with the features and
models utilized in each, along with the precision, recall, FPR, and
AUC results. Note that for E1, E2, and E3, the model listed is the
best performing model as ranked by Autogluon. We observe that
for experiments E1 to E3 using Autogluon, LightGBM and XGBoost
outperform all other models including FastAI and MXNet library-
based neural network models for tabular data. This is not surprising
as LightGBM and XGBoost are based on decision trees, which are
known to perform well in various classification problems.

While connection-level features from Hayes et al. in E1 perform
well, we observe that our novel host-level features in E2, outper-
form them in all summarized accuracy metrics. The model in E2
detects more malicious connections, compared to its connection-
level counterpart in E1, as evidenced by the significant improvement
(roughly 20.5%) in recall achieved, all the while maintaining im-
proved precision and FPR. The AUC score is also higher in E2 for
host-level features compared to connection-level features in E1.
These results indicate that high-level information extracted using
all Tor connections in a PCAP can be more effective in capturing
and classifying malware behavior than when activity in only the
most active connections is considered. This is handy since most
enterprise logs have these readily captured as opposed to packet
capture logs needed for connection-level features.

That said, we obtain the best performance when both feature
sets are combined. LightGBM performs best with a high precision
of 93.3%, 81% recall, and a very low FPR of 0.88%.
State-of-the-art DL performance. In E4 and E5, we evaluate the
performance of CNN models proposed in DF and Var-CNN. We
used the recommended parameters with different epochs. Note that
in DF, the authors only use automatically extracted features from
the CNN model, whereas in Var-CNN, a semi-automated feature
input is used for the CNN-based ResNet-18. The model is fed seven
additional features along with the auto-extracted features from the
raw data. These seven features are the total incoming and outgoing
cells, the ratio of in/outgoing cells to the total number of cells, the
average number of seconds between each outgoing cell, and the
total transmission time.

The results of applying these CNN models on our data show
acceptable precision performance (75.51% in E4 and 85.65% in E5)
with low FPR (3% in E4 and 0.9% in E5) at the expense of poor recall
performance. The models can predict very few malware-related
connections with low FPR but miss detecting a substantial number
of malware instances. Most malware connections are labeled be-
nign by the models. However, when we add our host-level features
along with Var-CNN features, we observe some improvement in
recall. The model in E6 achieves a precision of 91.48%, 0.78% FPR,

and 55.13% recall. One reason behind the significantly low recall in
these models may be attributed to the dataset size. For the automatic
feature extraction to work effectively, we would require to feed in
a significantly larger number of malware-related Tor connections.
Given the malware binary and traffic collection challenges, getting
sufficient data for training is infeasible. These results clearly indi-
cate the superiority of LightGBM in effectively classifying malware
connections over state-of-the-art CNNs when restricted to a small
training dataset.
Feature importance. Features in Autogluon are ranked based on
an “importance” score calculated using the permutation importance.
The score measures the performance drop resulting from shuffling
values of the features and evaluating the model on a modified copy
of the data. A high score signifies higher importance of the feature
in model performance [10]. The most important connection-level
features for the best performing model in experiments E1 and E3
fall into the following categories:

• Cell inter-arrival time features: These include statistical
measurements of cell interarrival times such as themaximum
interarrival time between all cells (in and out), between all
incoming cells, and between all outgoing cells.

• Cell concentration features: This is the count of incoming
and outgoing cells in the first thirty cells in a Tor connection.

• Outgoing cell features: These include the standard devi-
ation of the total number of outgoing cells that appeared
before each successive outgoing cell in the sequence and the
percentage of outgoing cells of the total cells in a connection.

• Rate of cell features: This is the alternating number of
cells per second, where a list of the total number of cells per
second is split into 20 equally-sized subsets and each subset
is aggregated.

The host-level features that lead to noticeable precision and re-
call improvements in E2 and E3 result from the top five features
listed in Table 2 by their order of importance. The top three fea-
tures use the duration of connections such as the average, shortest,
and longest duration of connections. As intended, these features
leverage peculiar differences in the duration of malware and benign
traffic, which is not captured at the connection level. Other top-
performing features include the number of unique DST ports used
across Tor connections, which reflect distinguishable patterns in the
variety of ports used in malware compared to benign traffic. Other
features that make up the top 10 ranked include statistical mean,
median, and mode of data sent and received in all Tor connections.
Statistical significance. We use the ’p-value’ scores of the top 10
features to quantify their usefulness to the classifier predictions.
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The ’p-value’ score in Autogluon is derived based on a statistical
t-test of the null hypothesis on the importance score (importance =
0). A p-value close to zero indicates a very low possibility of the
feature being useless to the model [8]. We note that the average
p-value of the top 10 features for the best-performing model in E3
is 0.093. Note that we obtain nine host-level and one connection-
level feature in the top 10 rankings. The low p-value scores of
these features indicate that these are highly useful to the model
predictions.

In summary, we observe that our global host-level features out-
perform connection-level features, so they can be used solo in
practice when traffic is not available to extract connection-level
features. However, we achieve the highest performance when we
combine both host- and connection-level features.

6 CANWE IDENTIFY THE MALWARE CLASS?
An essential usability feature for real-world applications of our
proposition is in identifying the class of the Tor malware traffic
detected on the network. This translates to a classical multi-label
machine learning classification problem as each malware instance
could belong to one or more classes. For example, a WannaCry mal-
ware binary can be categorized as a “ransomware” and a “worm”.
To achieve this goal, we evaluated a random forest model with
3 multi-label classification techniques namely, Binary Relevance
(BR) [11], Classifier Chains (CC) [12], and Label Powerset (LP) [15].
We utilize Python’s scikit-learn machine learning library for
the model and scikit-multilearn library for the multi-label tech-
niques. For training and testing, we use a 70-30 (train-test) split
across all PCAPs.

We train the model using these techniques with D5. We label
the binaries in D5 with their respective class labels derived from
AVCLASS2 (described in Section 3.3.1). The binaries in D5 fall
into the following 9 classes: ‘grayware’(94), ‘downloader’(88), ‘ran-
somware’(26), ‘miner’(31), ‘worm’(6), ‘keylogger’(1), ‘spyware’(3),
‘backdoor’(4), ‘virus’(4) and a ‘singleton’(12) category synonymous
to ‘unknown’ label, where the number in parenthesis corresponds
to the number of binaries that belong to the class type. All binaries
in D5 have two labels on average. The class labels assigned per
binary range from a minimum of one label to a maximum of four.

As an evaluation metric, we use standard multi-label classifica-
tion metrics, which are namely, the hamming loss, and the micro
average precision and recall instead of accuracy metrics. Using ac-
curacy can be misleading because it measures the fraction of correct
predictions which requires predicted labels to exactly match all the
true labels for each Tor connection. Hence, it does not portray clas-
sifier potential in predicting partially correct labels. Hamming loss
takes this into account by counting incorrect labels in predicted
vs actual labels and averages this distance over all samples. An
ideal classifier with no incorrectly predicted labels has a hamming
loss of 0. Furthermore, given the class imbalance in our dataset,
we use micro-average precision and recall over the macro-average
metric. The former aggregates True Positives, False Positives, True
Negatives, and False Negatives across all classes to calculate preci-
sion and recall. Macro-average, on the other hand, calculates the
precision and recall for each class individually before averaging.

Table 6: Malware class label prediction performance

Classification
technique

Hamming
loss

Micro-
average
precision(%)

Micro-
average
recall(%)

Binary Relevance 0.1 68.12 70.77
Classifier Chains 0.1 67.77 71.05
Label Powerset 0.1 66.81 72.37

Table 6 summarizes the best model performances with different
multi-label classification techniques. Recall that the model is trained
on 70% of the malware PCAPs in D5 (1,423 connections) and tested
on 30% PCAPs (604 connections). From the results obtained, we
observe that all techniques have a small number of misidentified
class labels with a hamming loss of 0.1. The model trained with LP
predicts the most number of correct label combinations with 72.37%
recall, the highest of all techniques. In summary, our features and
models can predict the behavior class of malware from their traffic.

7 ZERO-DAY EXPERIMENTS
In this section, we evaluate how our best performing models (dis-
cussed in Section 5.3 and Section 6) perform in the face of new
malware binaries never used in the training process. We call this
experiment zero-day test as we fetch fresh new Tor-based bina-
ries from VT using the same methodology described in Section 3.1.
We obtain 57 binaries on a single day in December 2021. We use
these to collect malware traffic. We execute these binaries daily on
the falcon sandbox for one week with an average of 400 submis-
sions per day. Note that these malware binaries and their network
traces are collected almost three months after the initial binaries
were collected to build our binary classification model described in
Section 5.

Upon inspecting the collected malware PCAPs for the new 57
binaries, we observe that only 26 binaries generated traffic resulting
in a total of 192 PCAPs. This is not surprising given the challenges
we faced in data collection as discussed in Section 3.1. For benign
traffic, we execute our benign data collection scripts (described in
Section 3.2) to generate a fresh test dataset that is disjoint from
the previous datasets used. This resulted in browsing profiles of
roughly 75% light and medium browsing, and 25% heavy browsing.
Our scripts access either Alexa10 domains, onion domains, or a
mix of onion and Alexa domains during execution (6 minutes). In
total, we obtain 1,010 PCAPs with benign Tor traffic. We process
malware and benign PCAPs and extract cells from active Tor con-
nections. For malware, we obtain two binaries that generate active
Tor connections in some of their executions. These are:
B1: SHA-256: 413ebd37620cfcb229322a0f3217ae8a6a61163eb

73b14a30e3d8d5a68847f1b (7 active instances)
B2: SHA-256: 5e244bf3a2fe36942e9e001bbb6677f6c8e2dbbd1

d74f74a8d0cb9f78c9e4a57 (6 active instances)
B1 and B2 were uploaded and analyzed on VT on 2021-11-29 and

2021-11-14, respectively. According to AVCLASS2 labelling, they

10Roughly, 70% of Alexa accesses are for popular domains from Alexa top 1K, and 30%
are from Alexa [1K,1M].
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Table 7: Zero-day experiment results

Malware in Test FPR Precision Recall

1% 1.1% 54.5% 100%
5% 0.7% 87.5% 100%
10% 1.0% 91.3% 100%
20% 1.2% 95.4% 100%

are both classified as grayware and worm. Upon further manual re-
search, we discover that these binaries belong to a malware family
known as EternalRocks [13] characterized as ransomware, worm,
downloader by behavior. They are newer advanced successors of
WannaCry. Variants of this malware family are designed to install
and use the Tor browser stealthily to connect to their hidden C&C
servers hosted on the Tor network. Having Tor connections with
C&C traffic from such binaries is exactly the challenge we would
like to use to test our trained model. This is also because these vari-
ants use the Tor browser, which is similar to our simulated benign
user. Depending on the activity of this malware in the extracted
Tor connections, there is a high chance that its traffic can appear
as benign for our classifier.

The dataset used for this experiment consists of 42 Tor connec-
tions from B1 and B2 malware and 2,953 benign Tor connections
derived from our browsing scripts. Recall that we extract the top
three most active Tor connections for connection-level features and
all Tor connections in a PCAP for host-level features as input to
the classifier (described in Sections 4.1 and 4.2).
Binary classification. Our first goal using zero-day data is to
identify malware Tor connections from benign successfully. We
use the best performing LightGBM model with connection- and
host-level features (E3 in Table 5). Note that the model was trained
on D5 which does not contain binaries from the EternalRocks mal-
ware family used in this zero-day test. We evaluate our classifier
under different situations by varying the proportion of malware
and benign traffic. With this, we intend to simulate realistic scenar-
ios where the number of malware Tor connections in a PCAP is
expected to be extremely low relative to the benign connections.

We create four test scenarios using 42 malware connections and
2,953, 808, 370, and 170 benign connections. This corresponds to
approximately 1%, 5%, 10%, and 20% malware connections for the
total number of connections used in each scenario, respectively.
Table 7 summarizes the results in all cases. The classifier can identify
all malware connections (100% recall) with low FPR regardless of
the proportion of malware traffic in the test set. In the 1% malware
connections scenario, the classifier can achieve 1.1% FPR with 54.5%
precision. As expected, precision degrades in this case due to the
heavy class imbalance as the number of positive class test instances
(42) is significantly lower than that of the negative class instances
2,953. Furthermore, even a small number of false positives (35 in
this case) can take its toll on precision. Despite the low precision,
the FPR is unscathed as the number of false positives is much lower
relative to the total size of the negative class in the test. The FPR in
all cases ranges between 0.7% to 1.2%.
Malware classes. Next, we turn our attention to the problem of
predicting correct informative malware class labels for binaries

B1 and B2 using our models. Having a model that can accurately
predict the type of zeroday malware from Tor connections on an
infected host serves as valuable information. Here, we use all three
trained random forest models based on the different multi-label
classification techniques we presented in Section 6. We use the
model trained with connection- and host-level features. Note that
the 42 instances of the binaries have the following true labels:
ransomware, grayware, worm, and downloader.

Using the evaluation metrics used in Section 6, we find that
the model trained with LP provides incremental improvements
compared to that of BR and CC. The LP model has the highest
recall with the lowest hamming loss (average number of incorrectly
predicted labels). The model predicts at least one class label for all
instances of B1 and B2 with a recall of 40% compared to 29% and
33% under BR and CC, respectively. The lower recall scores for the
BR and CC models are due to the “unknown” labels, which were
16% and 7% of the total connections, respectively.

Moreover, LP predicts class labels with a hamming loss of 0.25,
which is comparable to the loss of 0.28 and 0.26 achieved by BR
and CC, respectively. However, the precision achieved by the LP
model is 94.37%, less than the perfect 100% precision achieved
by both BR and CC. This means that although some connections
lack some labels with BR and CC, the predicted labels are 100%
correct. The LP model succeeds in labeling all malware instances
with comparatively more correct labels per instance (high recall)
and with the least number of false labels in the prediction (low
hamming loss). In summary, our models accurately identify zero-
day traces with very low false positives and predict correct labels
of the newer malware variants.

8 REVISITING ENTERPRISE LOGS: RESULTS
Due to the enterprise policy on data sharing, we were unable to
obtain raw PCAPs to extract Tor cells for connection-level features.
However, we can experiment using host-level features which can
be extracted using Zeek logs alone.

We extracted and verified the Tor connections from the connec-
tion logs. We obtain a total of 207 Tor connections originating from
nine unique source IPs. Out of the 207 connections, 197 originated
from 𝐼𝑃𝐴 , three from 𝐼𝑃𝐵 , and the remaining seven connections
originated from unique IPs each. To extract host-level features, we
divided time into 6-minute epochs (since our trained model is based
on PCAPs from 6-minute executions as well). This resulted in a
total of 63 classification instances containing host-level features
only from the connection logs. As listed in Table 2, we obtain host
features from all categories except DNS-based features. This is be-
cause none of the 207 Tor connections had a corresponding log
entry in the DNS logs. These were also excluded during classifier
training for a fair evaluation of other host-level features when there
are no onion domain leaks in DNS.
Results. Upon testing the classifier (E2 in Table 5) on extracted
enterprise data features, 16 of the 63 instances were red-flagged as
malicious with at least 80% confidence. All of these high confidence
positive instances trace back to 𝐼𝑃𝐴 , which is also the same source
with a total of 1,290 WannaCry-related C&C onion and kill switch
domain lookups in the DNS logs. Setting the confidence threshold
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to 70%, the classifier flags all the connections from host 𝐼𝑃𝐴 as ma-
licious except two connections. Some C&C domain access attempts
occur on the same day as the Tor connections (refer to Figure 6
in Appendix A for the timestamps of the Tor connections, onion
domain leaks, and kill switch domain lookups). Finally, 29 instances
were predicted malicious with significantly lower confidence of at
most 64% originating from other source IPs with no evident DNS
traces of malware activity.

9 RELATEDWORK
Tor traffic analysis. To detect malicious Tor traffic, Ling et al. [42]
propose TorWard, one of the earliest works which aim to detect
botnet C&C, DoS, and spam at Tor exit nodes. This is done using
Suricata IDS alerts. We focus on detecting Tor-based malware-
generated traffic on the client side. Their detection approach relies
on IDS alerts whereas we use traffic analysis on encrypted traffic.
Fajana et al. [33] propose using circuit data visible to ORs to identify
malicious traffic using simple traffic analysis features. However,
this work lacks in providing sufficient details in data collection and
experimentation methodologies, which fails to help understand the
scale and realisticness of the experiments and prove the proposed
claims. Cuzzocrea et al. [30] use traffic fingerprinting features such
as packet timing and flow characteristics to classify Tor darknet
traffic rather than malware traffic.

Some recent papers also focus on identifying Tor traffic and
applications out of TLS flows. Sarkar et al. [57] use Deep Neural
Network (DNN) on real-world Tor dataset achieving high accu-
racy in traffic classification and identifying its type such as web
browsing, email, chat, etc. Similarly, Ma et al. [44] also use DNN
on the same datasets though with a 2D CNN model for feature ex-
traction. Iliadis et al. [39] and Chorood et al. [28] employ machine
learning models to classify benign and darknet traffic. The former
uses CICDarknet2020 public dataset and its provided features for
classification, while the latter uses character frequencies in the Tor
packet payload for classification. None of these works attempts to
identify Tor-based malware traffic.

Website Fingerprinting attacks, known to de-anonymize user
activity, are closely related to our work as we use a similar traffic
analysis approach. The earliest work in WF was proposed by Sun et
al. [63]. The authors studied the attack over TLS encrypted single-
hop traffic. They measure the similarity between traffic signatures
of webpages derived from the number and size of HTML objects
using the Jaccard similarity metric. Herrmann et al. [38] developed
the attack to work on single- and multi-hop Privacy Enhancing
Technologies such as SSL/TLS, SSH, VPN, and Tor with Multino-
mial Naive Bayes using frequency distribution of IPv4 packet sizes.
Several works followed thereafter over the years in attempts to
enhance attack performance using advanced machine learning fea-
tures, models, and realistic experimental datasets [26, 27, 37, 43, 53,
61, 62, 64, 65]. Each work advances the attack by improving the
fingerprinting features (such as packet ordering, volume, time, and
direction of packets) and the classification model. We use a super-
set of all these features included within the 150 proposed in the
k-fingerprinting attack by Hayes et al. [37]. Although there exists
a large body of work on malware detection in general [46, 49], we
focus on comparing our work with network-based solutions.

Network-based malware detection. Some earlier works such as
BotMiner by Gu et al. [35] and Jackstraws by Jacob et al. [40] detect
C&C from botnet traffic. The former work applies a clustering-
based approach to traffic similarity. The idea develops on the fact
that bots within a botnet share similar C&C patterns. Jackstraws
uses a similar approach as ours in utilizing machine learning for
C&C traffic detection but uses behavior graphs (graph templates)
based on end host system calls associated with TCP connections.
Other works rely on communication order and patterns to iden-
tify malware families [50, 51]. More recently, Alahmadi et al. [22]
propose BOTection, which uses machine learning over content ag-
nostic flow-based feature vectors. They capture the frequency of
change in connection states and burst connection behavior of flows
generated by bots. The work uses Markov chains to model network
behavior while we use features derived from fingerprinting Tor
traffic. Piskozub et al. [55] group flows into flowsets with statistical
features to detect suspicious flowsets and evaluate their approach
on real-world traffic. Ghafir et al. [34] introduce BotDet, a system
with detection modules that captures specific techniques used in
botnet C&C communication. These works relate to ours in their
goal of identifying malware C&C traffic using network traffic but
differ from ours in terms of their approach. Moreover, these solu-
tions operate on general network traffic while we specifically focus
on Tor traffic.

10 CONCLUSION
More and more malware variants use Tor to hide their presence
and evade detection. Due to the importance of Tor for benign us-
age, we explore the possibility of using traffic analysis Tor-based
malware connections. We compile hundreds of thoroughly verified
Tor-based malware binaries and deploy them for months in order
to collect their traffic. We also collect benign traffic generated us-
ing the Tor browser in the same sandbox environment simulating
different user profiles. Our classifiers are able to identify malware
connections with high precision and recall and low FPR. Our mod-
els can identify the malware class based on its behavior. Finally, we
show the effectiveness of our models in the face of fresh zero-day
binaries, where we are able to identify all malware connections
even when they constitute 5% of test traffic.

This work opens the door for various future directions. Improve-
ments in malware sandboxing technologies can improve data and
traffic collection, which in turn can address research questions
such as can we identify each malware binary from its traffic? Can
we identify if different binaries are connecting to the same C&C
(thereby linking them to the same operators)? In our experience,
various malware variants are quite elaborate in their evasion tech-
niques [23, 24]. Detection based on traffic analysis can be thwarted
by malware by adding benign traffic to their operation. In this
case, adversarial machine learning defenses can address such ne-
farious tactics. Detection by ORs can also be effective against such
adversarial defenses since ORs have access to clean circuit data.
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A WANNACRY LEAKS IN REAL WORLD
ENTERPRISE DATA

Figure 6: Timeline of Tor connections and WannnaCry (ran-
somware) C&C and kill switch onion domain accesses in real
enterprise network

B BINARY-LEVEL SPLITTING
In Section 5.2, we explained a training approach where we split
at the PCAP level. For example, in D10, each binary will have
seven PCAPs in training and three in testing. This provides the
classifier with better training and visibility as it allows it to train
on more unique binaries. We have also experimented with a more
conservative approach where we split by binaries first. In this way,
PCAPs belonging to a certain binary are not split between training
and testing. In D10, all 10 PCAPs associated with a binary are
used for training or testing. Connections are then extracted and
features computed in a similar manner to what is described in
Section 5.2. Table 8 summarizes our results for the binary-level

Table 8: Performance comparison of different datasets using
binary splitting for model training/testing

Dataset Precision(%) Recall(%) FPR(%) AUC(%)

D5 94.0 77 0.78 98.41
D10 95.15 83.16 1.15 98.74
D20 96.39 85.70 1.43 96.27
D30 91.20 88.8 3.2 98.02

splitting approach using our experimental malware datasets. FPR
is clearly increasing with the decreasing number of unique binaries
for each dataset even though training instances per binary are
increasing. However, for D5, FPR is comparable to PCAP-level split,
though with a slightly lower recall. The other datasets have higher

recall but also higher FPR. D5 appears to provide the best training
to the classifier as it can identify the majority of malware instances
with the lowest FPR.

C EXCLUDED MALWARE FAMILIES

Table 9: Malware families and their binaries which did not
produce Tor traffic in the sandbox

Malware family No. of binaries

mokes 19
hype 6
ficker 2
crysan 5
zenpack 4

smokeloader 7
safebits 1
neshta 3

vkontaktedj 3
hesv 1

pioneer 2
ursnif 1

predator 1
nsisinject 1
tofsee 1
zard 1

fugrafa 4
rugmi 1
karo 1

zerodloader 1
daws 1
torjok 1

penguish 1
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