
DEMO: SDN-based System to Filter Out DRDoS
Amplification Traffic in ISP Networks

By
Priyanka.G.Dodia & Yury Zhauniarovich

Background
❏ Main Paper:

❏ Sorting the Garbage: Filtering Out DRDoS Amplification Traffic in ISP Networks
❏ Published in the Proceedings of IEEE NetSoft 2019
❏ Conference held in Paris, France in June 2019

❏ Demo Paper:
❏ Accepted at ACMʼs Computer & Communications Security (CCS) Conference
❏ To be held in London, UK from Nov 11th-15th

Problem
❏ DRDoS attacks are major threat to Internet with large scale impact

❏ Goal: Bring down victim network by bombarding it with garbage traffic

❏ Popular among attackers:
❏ Low resource requirements: Small spoofed request packets can reflect large response to victim
❏ Attacker stays anonymous: SRC IP spoofed with victim ip

❏ Attackers use vulnerable servers with open UDP ports (dns, ntp, ssdp..) to reflect and amplify traffic to
victim
❏ Negative impact on benign users; owners of vulnerable machines

❏ ISPs host numerous vulnerable servers, if abused, can generate garbage (reflected amplified traffic) in
Terabytes
❏ Hard to detect
❏ Loss of bandwidth and QOS to customers

Proposed Solution
❏ Our proposed solution:

❏ Shield Amplifier Network vs Victim Network
❏ Most existing DRDoS solutions try to protect victim networks
❏ Protect vulnerable amplifiers from spoofed amplification requests

❏ Stop attack Midway
❏ Detect spoofed traffic and filter out at edge of an ISP before it reaches amplifiers
❏ Thereby reducing the storm of attack traffic directed towards the victim

❏ Benefit ISPs and their customers
❏ Reduce wasteful bandwidth consumption of ISP
❏ Prevent loss of money for ISPs (asymmetric traffic agreements)
❏ Prevent QoS degradation due to amplification during ongoing DRDoS attacks

Our Solution Prototype
❏ Software Defined Networking based system to filter out garbage traffic from an ISP network

❏ Simulate the test network in GNS3

❏ Network Components
❏ Python based POX - SDN Controller
❏ OpenFlow Edge Switch
❏ Cisco Routers
❏ Ubuntu based Host devices in ISP network
❏ Amplification Honeypot installed on one of the ISP hosts

❏ Listens to any incoming spoofed attack requests abusing udp services

GNS3
❏ GNS3:

❏ Network Simulator software that seemlessly glues together different open source software
❏ Allows to emulate a network that includes cisco routers, switches, cisco devices and any other

devices that can run on QEMU or virtual box emulator
❏ It also allows to connect the virtual network to the physical network, it is possible to access

Internet in the emulated environment

❏ Each device in GNS3 is a docker image
❏ DOCKER containers are similar to virtual machines but light weight
❏ They run on same kernel as the host

❏ Quick Startup: Doesnʼt simulate entire OS
❏ More efficient in host resource usage

Demonstration
1. Main network components

2. Details of initial configuration steps

3. Launch DRDoS from attacker machine
a. We show spoofed attack traffic sent:

i. ATTACKER -> REFLECTOR HOST at ISP
ii. REFLECTOR HOST -> VICTIM

Demonstration
4. We show how honeypot detects amplification requests and issues block rule

a. We show reflected traffic from ISP stops reaching victim machine
i. Spoofed requests from ATTACKER -> AMPLIFIER are dropped at ISP

ii. No reflection after block rule is added

b. Attack packets observable at honeypot
i. Proactive honeypot rule implemented with high priority

ii. Traffic to honeypot is not blocked so it can monitor attack end to remove block rule

5. We show once attack ends, the block rule is dropped from switch table and
packets to victim SRC IP resume flow normally.

Demo Steps : Initial Set up
1. Initial Setup: Install Python on Controller and Honeypot machines

❏ Controller runs python based DRDoS server script
❏ Honeypot runs client script
❏ Install honeypot configuration (python setup.py)

2. Terminal to network components:
❏ Attacker, Host, Victim
❏ Controller, Switch, Honeypot

3. Startup: Start DRDoS App and server script at Controller
❏ Ping controller -> switch and all connected machines
❏ ./pox.py log.level --DEBUG forwarding.controller openflow.discovery
❏ Connectivity between machines:

❏ Ping controller -> switch
❏ Ping honeypot (10.0.0.4) -> host (10.0.0.5)
❏ Ping Attacker (20.0.0.2) -> honeypot/host
❏ Ping Victim (30.0.0.2) -> honeypot/host

Demo Steps
4. Attack Start: Abusing reflector at ISP

❏ Host : tcpdump host 10.0.0.5 -nnS
❏ Victim : tcpdump host 30.0.0.2 -nnS
❏ Attacker -> Host: nping --icmp -S 30.0.0.2 10.0.0.5 -c 20(spoofed SRC IP)

5. Start attack monitor and client script at Honeypot
❏ Honeypot client script: src/DDoSHoneypot.py
❏ Attacker -> Honeypot: nping --udp -p123 -S 30.0.0.2 10.0.0.4 -c 4 (spoofed SRC IP)

6. Attack Detection at Honeypot
❏ Show block rule at Openflow switch : Blocks reflection of packets to victim SRCIP

❏ Attacker -> Host: nping --icmp -S 30.0.0.2 10.0.0.5 -c 20 (spoofed SRC IP)
❏ Honeypot proactive rule with high priority (cookie #6)

❏ Show packets received at honeypot during blockage
❏ Attacker -> Honeypot (Honeypot continues to receive packets):
❏ nping --udp -p123 -S 30.0.0.2 10.0.0.4 -c 4 (spoofed SRC IP)

7. Attack ends and block rule is dropped as instructed by honeypot

Extra Commands
- Port open:

- apt install xinetd
- nano /etc/xinetd.d/chargen
- /etc/init.d/xinetd restart
- nping --udp -S 30.0.0.2 10.0.0.5 -c 10 -p 19
- tcpdump host -nnS 10.0.0.5 <host>
- tcpdump host -nnS 30.0.0.2 <victim>

